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ABSTRACT

In this paperamethod to deal with the inference problem
The with a di bipartite graph.

level, d:ffetent portions of '.he

is presented.
At each clearance
inference is

graph are saccessible. Then,
deﬂnedastheex:stenceofl‘vumalcycleofmfotmmonﬂow at any

classification level. The method we

queries is presented.

is
one's external knowledge winh information legally
revealed by the system. This problem frequently
arises datsbase  sysiems

to information posing
ed es. problem

opemteonthewommsepﬂndpleisoemmm
leak information to amy expert user’s queries.

In this paper we do mot claim solution to the
inference problem ss a whole. We oaly present
some algorithms that can be used in practice to
deal with simple and mot so simple cases of
inference, such as compound queries. We adopted
the representation of a directed bipartite graph
mostly to show that the concept that undesiies

present consists of ulgormnm that detect
and eliminate these cycles. Finally an algorithm that deals
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to the FDs and MVDs that hold between
attributes. Their work applies to the level of
coasistently classifying e datsbase, while the work
of Hinke [3] and Morgenstern [4] refers to the
level of reclessifying a datebase. Morgenstem
introduced the INFER function to quamtify the

inference csused by a set of attributes at & certain
classification level. Hinkes work is more general
and defines inf of more
than ome paths wuh different  aggregate
classifications hetween two attributes. These two
papers will be discussed in more detail later.

2.1. Query emswer trees

As mentioned in [5], an E-R diagram can be
transformed into a Let D be the set of
attributes, let S be the set of entities and let R be
the set of relations. The database graph of an
ER scheme is a graph <V, E> where
V=DUSUR, W=SUR and ECc WXV

K w belongs to W and d is an atiribute of w,
tlxen _edge (wd) belongs to E. If entty S
v, then edge (5, V)
belongstoE No other edges belopg to E. The
dotabase greph of an =R scheme differs from an
E-R disgram in that the attributes are explicitly
represented by a node in the graph. In addition, in

a datshase graph one may use a directed cost
gudn:ttiion to represent the cardinality of the

Furthermore, & way to represent queries with
% graphs, in the relational n]"ll‘)dg, is ptesented&
is paper, & query grapl & connecte
subgraph of the database
A query graph canmot repment relational
operations other then the patural join. A query is
a simple quezyzfncunbcexpmssedbyasingle
query gaph. It is compound if can
berepresented as a relational expression in terms
of simple queries. Fimelly, a cycle-free query is
called a guery tree, since it must be conmected.

22. Inference detectlon using gquery enswer
paths

Hinke (3] hes extended the notion of database
graph to what he calls the semantic relationship
graph. This is e directed graph G=<V, E>, with
errows indicating the direction of information flow,
es weil as the cardinelity of the relationships they
represent. The vetices V of G represent a set of
data elements. Any two vertices Vi and Vy are
connected by two edges: Eqp which points from
Vi tc V2 ané Epj which points from V3 to Vj.

The existence of an edge Ejj indicates that
knowledge of an clement from the set Vj, permits
one to know one or more elements from the set
Vj.Apﬁt.hfr(anitonlsdeﬁnedasnsetof
contiguously connected edges Ej.Ejp,....Em; there
can be any number of edges in the path.

An inference is seid to exist if for some edge Ej
concecting Vj to Vj, and having a classification
equal to security level A, there is a path from Vj
to V; which does not include edge Ej; and which
hes eggregate classification level B<A. This path is
called an inference path.

In this peper, we use both the potions of semantic
relationship graphs and query answer -‘raphs. We
assume that a query corresponds to a subset of
the database graph. To answer a query, ore has
to find a path that contains all the attributes
referenced in guery Probebly, this path will
contain relations and entities irrelevant to those in
the query, that must be used as intermediate links
between them. We use the wiole query
subgraph, eand not the minimal tree, because this
is where inference comes up. Following Hinke's
definition, we essume that inferecmce arises
whenever there are more than one query emswer
paths, with different aggregate classifications.

2.3. Quantifylng inference

Denning [6] has shown that the amount of
information about y that can be inferred from x is
meastred by the relative equivocation that
represents the reduction in uncertainty about y
when x is known, and which is given by the
following rule:

Hy= Z (x, y) logg——
v Py {x ( )

It assumes values ranging from zero, ¥ no
information can be inferred about y ome x is
known, to one when x discloses full information
sbout y. Morgenstern [4] defined the inference
function INFER(x->y) to be this relative
equivocation whenever its value exceeds some
threshold e. This threshold is used to give a
handle on quantizing & tolerance of minute
information flows. It may be set to zero, if one
cennot afford to have any infetence at all. The
mathematical definition of this function is given

below:
HG)-Hy () ” HOYH, )
lNFER(x—)y)s{ HY) H(y)
0 , otherwise

X discloses no information about y, then
Hx(Y)—H(y) and INFER(x->y) =0. ¥ x discloses full
information about y (its exect value), then Hy(y)=0
and INFER(x->y) =1.
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3. CONTROLLING INFERENCE IN MULTI-
LEVEL CLASSIFICATION SCHEMES

In a multilevel datebase we assume that there are
data classified at various levels and wusers with
different clearances. A user can access all

that have classification level lower than or emqual
to his clearance.

Unfortunately, this often is not the case.

f

defined above to be the inference problem.
In all the previous work done on the snbject
database is represented with a graph. wﬂl
adopt a similar representatica in our work with
the sole difference being the use of a bipatite
graph. We assume that the nodes in the graph
correspond to tables (emtities and relations) end
that the edges show the authorized flow of
informsation between them. nfe we
essume that cl;:slﬁcmon levels bave aiready

igned to tl d
process which is not of our interest), though these

Definition 1. Let G= (V, E) be the database
gaph Since this is a directed bipartite graph, we
ve:

V= EV U RV
(the set of modes is the union of the set of
eantities and the set of relations), and
E={ (vi,v’)I(vlﬁl!VAVlERV)V(TGEVA";GRY)}
(no wdge counec:s 0 entities or two m)

This greph is extendedinG—(V’,E)

V'={(vi, ¢ [ey & CL}
and CL is the ordered set (in decreasing orden)
{Top Secret, Secret, Confidential, Undassified}; to
each node is assigned 8 classification level. We
note here that edges are not classified, since they

levels may not be comsistent. Su and Ozsoy
have described a method of assigning classification
levels that arc based on dependencies between
attributes. They prove the problem to be
NP-complete, but give efficient algorithms to solve
it. For a query to be answered, all the enzm:sf

database
gme;hymwertableislmbmphofﬂnwm

Then, in general, we define inference to be the
existence of virtual cycles in the query smswer
graph; thesecyclescenbeformedttomﬁs:qnery
answer graph with the use of sub;
visible at the mext

ater.

gragh. Then, obtain dlessified
i.nformatlon by followlng th: paxhs with lower than
his clearance dassxﬁcauon levels
To deal with i the L
of these virtual cy« Tlns ean be done in many
ways, depending on the level of dassification we
using (le. when  using eattribute level
classiﬂem , one can reclassify am edge in the
path). Tbiswillmultdisxointgmupsot‘nodesthm
are securely accessible. In addition, there
meny possible criteria one cam use to detennme

the edge that causes the greatest damage.
3.1. Representation of the problem

We shaell start with some definitions, to make our
work-space clear. The reader must keep in mind
that we are working on a database with
attribute-level  classification.

There is a special status governing the behavior of

the entity ¢iice a guery is posed. Suppose thet we

have eatity AIC] (K[C},A;[C},Az[S].Aal‘l'S}), where

K is the key, Ay, Ap, A3 me other
classification

query

attribute, the whole entity is temporarily
mdmiﬂdulevdl'smshcwt.mmsmem
canpot access the subset of the attzibutes
contaired in his .

higher
?henotmswemdatdl rather than retuming only
Definition 4. Each reistion npode comsists of



daisy
Rectangle


A. Kameas et al.

PERSON
ivl

SOGSECNG

clearance, the larger the portion of the database
he can access. Users with Top Secret clesrance
must virtually be able to access the whole
database. Thus, Secret nodes are not visible in
Unclassified level.

Corollery 2. When one moves from a higher
level to a lower one, paths in the database break,
as nodes become not visible and connections
between entities disappear.

The problem of inference in this case arises when
a user with clearance level A is able to dednct
information contained in tables classified at a
higher level B.

Definition 6. Suppose that relation R{B] which

(a)

CONVENES
[Ts)

(b)

Figure 1.Representation of entities and relations

ateribute modss. These ondes are the Key nodes of
the entities * i and any other possib

d entities Vj and Vo becomes invisible as
we move down one level, to level A. Then, the
subgraph ViRV can be inference causing. In our
case, this can be detected if the portion of the
database graph that is visible at level A together
with the above subgraph form a ‘virtual' cycle.
This means that there is an citernative path
between these two <miiiies with aggregate
classification level lower than B.

The scope of this work is to examine the
possibility of breaking this aiternative path. Though
this s costly most of the times becanse
information is withholded, we believe that the
limination of infi that we prop can meet

the cost.
3.2. Controlling inference

Defipitlon 7. The virtual cycle that causes
inference is broken with the elimination of one of
its edges.

Many problems arise with this method The
criteria that are used to select the edge to be
removed is e serious one. Another one is the
precise definition of 'edge climination. Finally, the

1 of

relation attrip- - .:¢ attribute nodes form a
complete gm: - “on must at least be
classified at the i v wpwer Bound of the entities
it relates (Figure 1b). This guarantees that if a
relation s accessible, then ell entities it relates will
also be accessible.Classification of e relation at a
level that i5 higher then ali the entities it relates
is not prohibited The graph consists of two kinds
of nodes comresponding to entities and to relations
between them (it is a bipartite graph), and of
edges that show the flow of ion

e partitions in
order to answer a posed query must be solved.

Our algorithm is run once and for all to mark the
possible inference scurces for each classification
level. Then, each time a query is posed, we try to
construct & query amswer tree that does not
contain any of these sources. If this is met
possible, we break the query answer tree by
eliminating a set of edges that breaks all inference
paths. Here, we must apply enother algorithm to
do the job. Finally, we aenswer a number of
with a minimun loss of information with

epfities end relations. Note that neither two
entities nor two relaticns can be directly connected
viz an edge. We reprented relations with nodes
to meake clear thet they hold information to be
protected and do not omly act as buffes of
informstion flow. For example, when en entity is
classisfied at Secret level, this mieans that every
antribute is classified ©¢ least at Secvet level, with
the key attributes classified at Secret level.
Definifion S. A different portion of the graph is
visible at each clearance level. The portion that is
visible at some classification level is a superset of
the portion visible &t lower omes.

This is logical, since ihe higher the user’s

vespect to the initial query. Thne elimination of
some edge is done by making non-accessible some
attributes in the relation on this edge. It results in
the partitioning of the databse into clusters. Then,
we answer only those queries that do mot ramge
over more than ope cluster.

Exzample

To make these clear, we give an example.

S\nlppuse that we have the database scheme:

EI: PROJECT(PROJNO, head) [S]

ll%Z: COMPANY(COMPNO, cname, address, country)
1
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PROJECT
s} 13

TAXES
7S] R0

COMPANY
ul

s—{ SUPPORTS Y=
(&) Rt

@E@

T8 R2

i
MEETING TTENDED-B
U e U] R3

INVITED

M8
CONTACT

U] ES5

Figure 2. Extended Database Graph

: MEETING(MEETINO, room) [U}
E4: PERSON(SOCSECNO, name, address, phone)

: CONTACT(NAME, phone) [U}
: SALARY(AMOUNT, deductions, rank) [U]

(NAME,

: SUPPORTS: COMPANY->->PROJECT [S]

CONVENES: FROJECT->->MEETING [TS]
: ATTENDED-BY: MEETING->->PERSON [U]
: EMPLOYS: COMPANY->->PERSON [S]
: WORKS-FOR: PERSON->COMPANY [U]
: INVITED: MEETING->->CONTACT [U]
: ESCORTS: CONTACT->->PERSON [S)
: IS-PAID: PERSON->SALARY [S]
R9: DEDUCTED: SALARY->STATE [S]
R10: TAXES: STATE->COMPANY [TS]

where the attributes in capitals are the entity keys
and arrows indicate the flow of information. We
assume thet entities end relations are represented
s tables, and that relation tables hold the key
attributes of the related entities. We also assume a
three-level classification scheme, with
Unclessified<Secret<Top Secret. The database graph
gii;turemz its from the above scheme is shown in
The portion of the graph that is visible at each
classification level is depicted in Figure 3, a-c. Note
how the climination of R10 breaks the path between
E7 and E2, ss one moves from level Top Secret to
Secret, in Figure 2, a-b. This is a point of possible
inference, since ome can infer the conmtents of R10
by following the aiternative path E2RSEARSESROET.

WORKS+OR

3.2.1.Algorithm that detects inference cycles

We present here 8 two-phase algorithm, that can
be used for the detection of an inference cycle.
Note that our algorithm works at the Top Secret
level; therefore it has an overall view of the whole
:_Ia.tnxme. This cycle-detecting elgorithm wotks &
ollows:

In phase ome, which is executed at the datshase
design stage, the input is G’ snd the cutpnt
is 8 graph Gj and a set of subgraphs IS; for every
dassification  level ¢; belongs to CL. Gj is the
subgraph visible at level ¢j, where ISj is the et of
inference sources in this level We take the
following two steps:

1. Move to level ¢.g<gj . Let Gi1= (Vi Epp
be the portion of the initial graph that is visible at
this level. Then

Vi1=Vi- {("k )},  and
Eim1= B (v, %) | (0, ) @ By a (o, @ Viep) v
vk € RVj-g AVjE Vi) v (vj € RVi—g Avg € Vim D)}
Definition 8. As we move to a lower cléarance
level, only the stiributes with classification level at
most equal to the cumrent clearance level remasin
visible (Figure 4a). An entity node finally becomes
invisible when the current clesrence level is lower

than tiie classification level of its key attributes (and
by definition lower than the eatity classification
level).
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(c) Unclassified level

Figwe 3. The different subgraphs visible at each
clearance level

Definition 9. As we move to a lower clearance
level, only those key attributes with classification
level at most equal to the curmrent cleerance level
remain visible (Figure 4b). Those with higher
classification levels become invisible, together with
all the edges that run into them. A relation mode
that consists of n key attribute nodes and k relation
nodes finally heromee in fasi w-i O ids
key attributes become invisible. All edges that

connect this relation are deleted, even if one
adjacent node is still visible. In this way, no
dangling edges are left.
2. It is clear that inferemce is possible only if a
1 nade b invisi but the related
entities remain visible. Therefore, the Inference Set
for level ¢j.i contains subgraphs formed of such a
relation node together with the edges that conmect
it to its adjacent entity modes, only if there is an
alternative path between these entity nodes, with
lower aggregate classification.
Thus, for every relstion node V¢ € RV; AvyeRVy_g

and entity modes vp.vq helong to EV (this is a
relation between two entities only), if Pa=((vp.vr1):
(Ve Vsih-VmVg)) Is the alternative path that
connects these nodes (vp does not belong to Py)
with aggregate classification level cy<cj.i, the
inference set (initially empty) will be:

IS-i= 185 v (v, {(vp, V). (v, vg)))
A path's aggregate classification level is equal to
the Least Upper Bound of the nodes it is composed
of. This definition can be easily expanded for
relations between more than two entities. There
exist many known algorithms that test the existence
of such an elternative path.
To remove one edge, we dont permonently delete
any data. We simply use reclessification to make it
invisible to the user. So we've marked the edge
between an entity and a reletion to be removed.
Since we adopted a bipartite graph representation,
we could reclassify at a higher level the attributes
of this relation that also belong to this entity. In
this way, only part of the reletion is visible, and no
connection can be made te the entity. Relations are
used as switches that permit the flow of
information if tumed on, or restrict i, if turned

Oll.

Eliminating edges results in the clustering of nodes.
Thus the database is partitioned in clusters of podes
and queries posed over one cluster can be enswered
without fear of inference, but it is damgerous to
answer gqueries that rvange over more than one
cluster.

By the end of phase one, all the inference causing
subgraphs are already marked. We move then in
phase two, which is executed each time a query is
posed. At stage, our algorithm performs the
following:

1. Each time a query q with clearance level cq is
posed, it d the corresponding query
answer graph AGg, and creates the first version of
the query answer tree ATq.

2. Then, for every (vp, {(v§ , Vg) , (V¢ , Vj)} Which
belongs io Isaq. it checks if vy belongs to ATq and
vj belongs to ATq.Note that neither (vvp) nor
(Vp.vj) belong to ATq We keep all these ‘virtual’
subgraphs in set ISQ (the query iuference set).

3. I this is true for at least one subgraph, amn
algorithm that eliminates inference is called.

The subgraph that ic visible at every o

Vi
Gaay culisisl of one OF more connected components.
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PERSON
i

ADDRESS

PROJNO
]

(0)

Figure 4. Evolution of the conteats of entity and
relation  nodes

Definition 10. A query answer tree may at most
be equal to ome of the conmected components of
the query clearance level. Thus, this connected
component is the query answer subgraph AGg. The
query answer tree is a subgraph of this connected
component and is formed as follows:

1. Every attrivute that will appear in the Fesalt
table is a leaf.

2. The minimal acyclic connected graph that contains
these leaf modes is the query anmswer tree.
Definition 11. A path in the query answer tree is
safe when all the “"virtwal" cycles are removed.

3.22. Algorithm that climinates cyeles

After the cycle detection phase we proceed with
cycle breakage phase. In this phase, the input is a
graph Cy=AGq ISQ
The output query answering  tree
Tq-(vq»Eq), Gn-(V“, Eu) is the query answer graph
with all the virtual inference causing subgraphs
appended to it. We define INDEGREE(V) and
QUTDEGREE(Y) to be the number of meomms and
outgoing edges respectively for node This
four-step algorithm wetks as follows:
1. For every v that belongs to Vy if

INDEGREE(v)=OUTDEGREE(V), do:

Eg EgU INW),

Ey= Ey - INW) - OUT(W)

Dy= Dy U OUT(V)

while, if OUTDEGREE(V;2INDEGREE(W), Go:

Eg= Ey U OUTH),

Ey= Ey - INW)

Dy=Dy U BNV
where IN(v) and OUT(v) arc the sets of incoming
and outgoing edges respectively for nede v. and Dy
is a 'waste’ set, where we keep all the edges that
are removed; later we will try to place som2 of
them back in the graph.
2. ¥ (p, {(a, p), (p, W)}) « ISQ:

Eg= Eq - {(w. 2. (& W},

Vg= Vg - (p} and

D =D - {@ ), @ V]
3. For every (u, v) belongs to D, compute Wiy,
where Wyy is some weight we assign to each edge.
This weight will subsequently be used ss 2 critevion
to select the edges that will be piaced back in the
query answer
4. Forevery(u.v)be:mgsiol) piacetbeedge
back in the graph, provided thet the umion
resuiting graph with iSQ forms an scydic gr:ph
Start from the edge with minimum Wyy. This step
is necessary, since the :!gomhm that bmaks cycies
does mot remove a minimum set of edges to
achieve it. As a result, more edges than necessary
are removed, and we place back those that doat
do any hamm.
Deﬂmuol 12. A query is answered safexy if el
the paths in the guery answer tree are saf

(contd)

We will pow move on to show how the algorithm
that detecis cycles works with our example. At
the TS level, the whole graph is visible
(Figure 3a); therefore

V'rs-(m E2, E3, E4, ES, E6, E7, Ri R2, R3,

RS, R6. R7, R8, RY, R10} anm:

ETs-{(El,RZ), ®R2.E3), (E3R6), (RG.ES). (ESR7),
[R7.E9), (E3R3), (R3.E4), (E4.R§)
(E2.R4), (R4,E4), RLED,

(EARS), (RS, ES6), (E6RY9), (R9E7)= (ETR10),

R10,E2)}.

As we move down to level S, relations R2 and RIO

become non visible, as they are Ts

(Figure 3b), the:efon

Vs—(El , ES E4, ES, Eﬁ E7, Ri, R3, R4,

R8, R9} axn

Es—l(ES.RG) (RGES) (F5.R7). R7.ES), (B3RS,
(R3E4), (E4ARS), (RSE2), (E2R4),

®4ES), (E2R1), (RLED, (E4R8), S, E6),

(E6R9), RIED}

But, as onme can easily see, one can obtain the

information comamed in these TS tables just by

following the slternative paths
PylS)= ESRSE4R5E2R1£] and
Po[SI~E3RGESR7EARSE2R1E1,
for node R2 and
Pals j—&R4FARSEéRQE7.

for node R10. Thus:

ISg=((R2, ((EIM), [®2,E3)}, @10,
RIOE2)D}.

Example

{(E7TR10),
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The same procedure is followed for the mext iower
level (Undclassified). We now proceed with phase
two, where we suppose that query q:

select PROINO, SOCSECNO
from ATTENDED-BY
where {
select SOCSECNO, COMPNO
from WORKS-FOR
where {
select PROJNO, COMPNO
fiom SUPPORTS
where COMPNO=KITSOS'

}

is posed, with cq=S. The query enswer tree ATq is
formed:

ATg=((E3R3), (R3E4), (EARS), (RS.E2), (E2,R1),

®RLED)

while the query amswer graph is Gg (the subgraph
visible at this clearance level),
Cleariy, this user is using the alternative path to
obtain information for the MEETINGS that certain
PROJECTS SUPPORTED BY COMPANY 'KITSOS'

tree that is formed at the S level comteins nodes
El and E3, while ISQ=(R2, ((E1R2), R2, E3)})
(subgraph (R2, ((El, R2), (R2, E3)) belongs io
ISg), so this query probably causes inference,

We call next the elgorithm thet breaks alternative
paths, with inpwt Gy=Gg U ISQ. We check every
node in the query answer graph, starting from E1
and moving counterclockwise. First we deal with
entity nodes end then with relation nodes.
For node EI, INDEGREE(EI)=OUTDEGREE(EI),
therefore:

Eg=((E1R2)),

Ey=Ey - {(RLE1)} and

Dy={R1ED)}.
For mode E3, ll\’DEGREE(ES)<0UTDEGREE(E3),
therefore:

Eg= Eq U (EB3R3), (E3R6)),

Ey= Ey - {(R2,E3)} and

Dy= Dy U {R2.E3))
For neode ES, INDEGREE(ES)=OUTDEGREE(ES),
therefore:

Eq= Eq U {(BSR7)),

Ey= Ey - {(RG,E5)} and

Dy= Dy U (R6,E5))
For node E4, INDEGREE(EAPOUTDEGREE(FA),
therefore:

Eg= Eq U {(R3E4), R7.E9), R4.E2)},

Ey=Ey - {R3.E4), R7.EA), (R4.E4), (E4RS),

(EARS)} and
Dy= Dy U {(B4RS), (E4RS))

For node E6, INDEGREE(EG) =OUTDEGREE(ES),
therefore:

Eg= Eq U ((B6R9)),

Ey= Ey - {R8,E6)) end

Dy= Dy U {RS,E5)}
For node E7, INDEGREE(E7)>OUTDEGREE(E7).
therefore:

Eg= Eq U (R9.E7)},

Ey= Ey - {R9,E7) and

Dy remains unchanged.
For node E2, 1NDEGREE(E2)<OUTDEGREE(EZ),
therefore:

Eq= Eq U (B2R4), E2R1)),

Ey= Ey - [(RS,E2)} and

Dy= Dy U (®R5,E2))
th c}gntinue now with relation nodes, commencing
wi 3
For node R2, INDEGREE(RZ)bOUTDEGREE(RZ),
therefore:

Eg= Eq U ((B1R2)),

Ey= Ey - ((ELR2)} and

Dy remains unchenged.
For node R6, INDEGREE(R6)>OUTDEGREE(RG),
therefore:

Eg= Eq U ((E3R6)),

Ey= Ey - {(E3R6)) and

Dy remains wnchanged.
For node R3, INDEGREER3)>OUTDEGREER3),
therefore:

Eg= Eq U ((E3R3)),

Ey= Ey - {(E3.R3)} and

Dy remains unchanged.
For node R7, INDEGREER?7)>OUTDEGREER?),
therefore:

Eq= Eq U (B5R7),

Ey= By - {(BSR7) and

Dy remains unchanged.
For node R9, INDEGREE(R9)>OUTDEGREERSY),
therefore:

Eq= Eq U ((E5R9)},

Ey= Ey - ((B6RY)) and

Dy remains unchanged.
For node R4, INDEGREE(R4)>OUTDEGREE(R4),
therefore:

Eg= Eq U ((B2R9)),

Ey= By - {(E2R4)} and

Dy remains unchanged.
Finally, nodes R1, 11‘115g andg R8 are allleftthwiﬂxout any
incoy OF Outgo! edges, so e e sefs
rem;lnmg unchanged. At the end of the al?gﬁﬂm's
first step, what is left from the original query
answer graph looks like Figure 5a. Now we Temove
node RZ from Vg, edge (E1,R2) from Eg and edge
(R2, E3) from Dy, since in effect this subgraph is
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not visible at this clearance level.
We will now assign weights to the edges in Dy, a
process that in the real world must be done at the
database design stage. The process we use is
simple: Every edge that does not belong to the
ATq is assigned & O weight. Every edge that
connects Unclassified nodes is assigned a 1 weight.
Every edge that conmects an Unclassified node with
a Secret one is assigned a 2 weight. Finally every
edge that conmects two Secret nodes is assigned a 3
weight. The simple premise that underlies this
process is that it is easier to rveclassify a Secret
node than an Unclassified one. Dy now is as
follows:
Dy={RLED[3], RS.E2){1], (E4.R8)[0L,(E4RI)[1],
(R6,ES)[1}, (R8,EG)0]},
with weights shown in brackets.
Now, we begin to put back edge after edge,
commencing with the ones with the smallest weight,
and checking that the graph remains acyclic. Note
that edges with O weight ere not used at all, since
they are irrelevant to the query we are trying to
answer. The edges are placed in the graph in the
following order: (RS, E2), (E4, RS), (R6, ES)
Now, if we place edge R1, El), a cycle will be
formed. Thus, the query answer tree is formed
(Figure Sb). As one can see, reclassifying mode E1
(and as a resnlt relation Rl) to a higher level,
breaks the inference path. general, onme can
observe that, in the extended database graph, if
there are two modes with classification level A in
cascade, then no inference for these nodes can be
caused at level B, A.

33. Compomnd queries

The algorithms presented above may deal well with
simple  queries, but have mno effect on compound
queries.

Deﬂnltion 13. A compound query is a ‘virtual'
query, in the sense that it is mever posed as ome.
Instead, many simple queries are posed, the union
of the answer sets of which is equal to that of the
compound query.

It is clear that a compound query may well be
causing inference, while the simple queries it
consists of may be safe. So, if posed, the
compound query would not have been answered, but
the simple queries will indeed be auswered. In this
way, a malevolent user obtains information he is
normally not allowed to access.

To deal with this situation, we propose
algorithm that uses the notion of history, that is
the answer to a gquery also depends on the previous
queries the same user has posed. If some user
continuously poses queries that cause inference, he
should be marked as and

)

Figure 5. Coustruction of guery answer tree.

33.1. orithm thet desls with
Aqlgﬂm cempound

With each user u, 2 graph HGy i associated This
gmphisfomedbyaﬂtheqneﬂﬁmiswrhn
posed up to

1. Eachdmeamuwithdeammelevel
pcsesaqueryqthntcanbeamwemdsafdy,AT
is saved. In effect, ATq is appended to the graph
HGy.

2. Then, ¥ (vy , {(v;,% ), (vp.95)})€1Scq , it checks
if v; €HGy A V; € HG,. Note that meither (v;,% )
nor (v, vj belong to HGyp.

3. I one such subgraph is found, then an
inference-causing compound query has been posed
The obvicus way to deal with it is not to amswer
the last simple que;a:lm N?ﬂtlc that this method can be

measures must be taken.

the queries & user has
poseduptodatc
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4. CONCLUSIONS AND FUTURE WORK

In this paper we examined the inference problem
that arises In multdevel databases. We used an
exiended datsbase graph model, and showed how to
partition this gruph to subgraphs that correspond to
the various classification levels. Then we presented
algorithms that detect and eliminate inference
sources in order to emswer a query safely. These
algorithms act like filters that constrain query
answer sets depeiniiug on the inference sources they
contain. In the end we examined the complex case
of compound queries, and presented a solution that
is baseu on the notion of history.

We are cwrently examining different, more
effective, criteria to be used in the removal of
inference causing edges. In particujar, we sare
working on the use of INFER function, that places
a threshold on the inference causing information
flow. This will eventually lead to the inclusion of
more safe edges in the query amswer graph, which
means that more queries will be answ Finally,
we are examining the potential of the bipartite
graph representetion, to deduct more effective
algorithms for inference detection and elimination.
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